
D D C

TM.4539/000/01

USER ADAPTIVE LANGUAGE (UAL):

A STEP TOWARD MAN-MACHINE SYNERGISM

Aiko Hormann, Antonio Leal, David Crandell

Sponsored by tho Advonced Research Projects Agency

AKPA Order No. 1327

June 28,1971
Rtpreducad by

NATIONAL TECHNICAL
INFORMATION SERVICE

Springfiald, V*. 221JI

a
■

BEST
AVAILABLE COPY

,:t:_ .,

UNCLASSIFIED
Secoht^UMjhcjJlM

DOCUMENT CONTROL DATA .R&D
(Stcutlty rlmi»IHtMlon el MM», bodr ol •htttmct mnd Indatlng annolmllon mutt 6> mnlmnd whit Of ontmll ng*H I» clmaallludj

i oni6iN*TiN6 «CTIVITV fCeiperato «ulfiorj

System Development Corporation
Santa Monica, California

M. NCPOIIT SCCUNITT C t.«••IFIC* TIOM

Unclassified
a*. enouP

J REPOKT TITLE

User Adaptive Language (UAL): A Step Toward Man-Machine Synergism

4 oescniPTivc NOT«» (Drßt olri>f t ana Ineltnlw dm'»»)

Scientific
s tuTHomat (Flnt nrnrn», mIMI» imtiltl, laat nmm») ~" ""~

Alko Hormann, Antonio Leal, David Crandell

6 REPORT 0*T«

June 28, 1971
»•. TOT«t NO- OF RACKS

60
rb. NO. OP REft

31
•a. CONTRACT ON «RANT NO.

DAHC15-67-C-0149
b. PROJECT NO.

ARPA Order No. 1327, Amendment 3,
'■ Program Code ID30 and IP10

»it»

TM-4539/000/01

M. OTMCN REPORT NOttt (Any olhbt nuaifear* Aal may b» m»»ltn»d
thlt npatl)

None

10 OlSTRiauTION ITATIMKNT

Approved for public release; distribution unlimited

II SUPPLEMCNTANV NOTE* la. SPONSORING MILITARY ACTIVITY

13 ABSTRACT

The User Adaptive Language (UAL) is designed to provide a convenient and flexible
means for man-machine communication in cooperative problem-solving/decision-making
efforts. The language is extensible and functionally oriented with user control of
evaluation and data manipulation. The interactive nature of UAL provides a "conversa-
tional" environment conducive to dynamic decision making.

The syntax of UAL is simple and straightforward. The function definition features
provide a means of creating new terms and primitives allowing a higher level of
sophistication in the communication of ideas. The new functions may be compact and
stylized or English-like in their use. Consequently, the problem solver is free to
concentrate on what to say rather than how to say it. UAL can be a powerful tool in
building systems in which man and machine can work together to complement each other's
capabilities.

\

ID /r..l473 UNCLASSIFIED
""" Security CUssification

UNCLASSIFIED
Security CUi»ific«tion

KKV WORDS
NOLB

UNCLASSIFIED
Security CUtiification

«ft

SERIES BASE NO / VOL REISSur

TM 4539 fiOOfil

(TM-4539/000/00 is a draft

r

SZ\

vii/

mm
DIGuJBUTION f-TATEI 1 A

Äpprovod br public i^bosoj
Distribuiloii cE^iiritcd

[Di«/
(TM Series)

This document was produced by SDC in performance of contrart No. DAHC 15 67 C 0149
with the Advanced Research Projects Agency, Department
of Defense

USER ADAPTIVE LANGUAGE (UAL):
A STEP TOWARD MAN-MACHINE SYNERGISM

Alko Hermann
Antonio Leal
David Grande11

June 28, 1971

SYSTEM

DEVELOPMENT

CORPORATION

2500 COLORADO AVE.

SANTA MONICA

CALIFORNIA

90406

A-1 159 (5'68)

The views and conclusions contained In this
document are those of the authors and should
not be Interpreted as necessarily represent-
ing the official policies, either expressed
or implied, of the Advanced Research Projects
Agency or the U.S. Government.

L/ SEP

LbV

D D C
-rn f-.r-.

i 3 IS7I

U LJL
0

System Development Corporation
28 June 1^71 1 TM-4539/000/01

(Page 11 Blank)

ABSTRACT

The User Adaptive Language (UAL) Is designed to provide a convenient and

flexible means for man-machine communication In cooperative problem-solving/

decision-making efforts. The language Is extensible and functionally oriented

with user control of evaluation and data manipulation. The Interactive nature

of UAL provides a "conversational" environment conducive to dynamic decision

making.

The syntax of UAL Is simple and straightforward. The function definition

features provide a means of creating new terms and primitives allowing a

higher level of sophistication In the communication of Ideas. The new

functions may be. compact and stylized or Engllsh-llUe In their use. Con-

sequently, the problem solver Is free to concentrate on what to say rather

than how to say it. UAL can be a powerful tool In building systems In which

man and machine can work together to complement each other's capabilities.

/

System Development Corporation
28 June 1971 m TM-4539/000/01

(Page iv Blank)

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

1.1 Need for Dynamic Extensibility 2
1.2 UAL As A Step Toward Man-Machine Synergism 3

2. DESCRIPTION OF UAL (USER ADAPTIVE LANGUAGE) 7

2.1 Basic Elements 8
2.2 Assignment 9
2.3 Lists 10
2.4 Evaluation 12
2.5 Operationais 13
2.6 Functions 14
2.7 Argument Map 14
2.8 State Conditions 19
2.9 Built-in Functions and Language Extensibility 19
2.10 The Control Character # 21
2.11 Predefined Functions 23

3. USE OF UAL: AN EXAMPLE 26

3.1 PO&M System (Planning Organization and Management
System) 26

3.2 Primitive Functions and Building Blocks for PO&M
System 29

REFERENCES 38-
40

APPENDIX A. A UAL Terminal Session 41-
53

APPENDIX B. Precedence 54

APPENDIX C. Character Conversions 55 &
56

APPENDIX D. UAL Syntax 57

System Development Corporation
28 June 1971 1 TM-4539/000/01

USER AD'^TIVE LANGUAGE (UAL):

A STEP TOWARD MAN-MACHINE SYNERGISM*

1. INTRODUCTION

This paper describes a communication language between man and machine designed
to aid our research in man-machine synerglsm. The overall objective of our
research is to develop a system and techniques with which man-machine talents
can be utilized effectively and through which man and machine can "co-evolve"
in a variety of decision-making and problem-solving situations.

Research efforts have been concentrated on answering three interrelated ques-
tions: (1) "What machine capabilities and features, including adaptivity,
can be built in and what must be left to man-machine interaction?" (2) "What
type of problems or problem environments from which substantial payoffs can
be expected are especially in need of this approach?" and (3) "What type of
language is needed for man-machine communication to enable the man to start
exploiting the machine capabilities from the early stage of problem conceptu-
alization and definition through the exploratory and the intuition-guided
stage of problem solving?"

Rudimentary models constructed in an attempt to give partial answers to the
three questions are Gaku,**a system of computer programs which has been
evolving for several years; Shimoku [Hermann, 1966], a highly complex game-
like environment with complex payoff-cost functions in which man and machine
Interact in generating and evaluating alternative courses of action to gain
a high score; and the User Adaptive Language (UAL).

Only Shimoku and a small part of Gaku were implemented on the Q-32 computer,
the rest of the Gaku design was hand-simulated at the pencil-and-paper level.
However, a great deal of insight and experience with live subjects was gained,
which led to several modifications of all three models.

*
This document is a revision of an earlier draft document
(TM-4539/000/00, dated April 10, 1970).

**
Gaku is a Japanese word meaning adaptive. This system was first
designed and implemented on the AN/FSQ-32 computer in the context
of artiricial-lntelligence research [Hermann, 1962, 1964, and 1965].
It was later redesigned for man-machine cooperative problem solving
and was partially implemented on the same computer [Hermann, 1966
and 1969]. The latest design features, which incorporate team
planning and problem solving and are aimed at real-world problems,
are currently being implemented on the IBM 360/67 computer under
SDC's ADEPT time-sharing system.

System Dc/elopment Corporation)
28 June 1971 2 " TM-4539/000/0]

1.1 NEED FOR DYNAMIC EXTENSIBILITY

(
The following is a summarization of the findings that combine our own ;'•
observation and the reflective-introspective comments expressed by expesLmen-
tal Shlmoku subjects. These findings confirmed our earlier belief thatrthe
dynamic extensibility of Gaku capabilities, which depends on dynamic i
extensibility of the communication language, is one of the essential features
in achieving man-machine synergism.

• Even simple bookkeeping functions of the machine can greatly enhance
the information-handling capacity of the man, especially In keeping'
track of interrelated elements in a complex situation. However, the
need for such bookkeeping assistance can arise in so many different
ways and different situations that a fixed set of predetermined
machine functions cannot handle all such needs adequately. Pro-
visions must be made to enable the man to formulate these requests
to the machine as the need arises. Some clever ways of utilizing
simple machine functions apparently come about dynamically during
the interaction when the complexity of the situation exceeds the
information-handling capacity of the man. When such clever ideas
are not forthcoming or machine aids are not available, the man
tends to oversimplify the situation, deliberately (or unconcciously)
Ignoring many Interrelated elements and often leading to a premature
decision or conclusion. This is especially true when complexity
and time constraints are present simultaneously.

• Before actually executing their decisions, most subjects ask "what
if" questions either overtly or covertly in order to estimate the
consequences of the tentative decision steps that have been formu-
lated. However, the breadth and depth of such "what if" questions
varies greatly with individuals, even with machine assistance.
Since exhaustive examination of alternatives in more than three-
step depth is infeasible (in the Shlmoku environment) even by the
machine, very selective "what if" explorations are generated during
the Interaction. Understanding how such selectivity is formulated
dynamically will answer one of the major questions about what
separates a good problem solver from a poor one.

• The performance records of the subjects (in terms of the numerical
"score") show a dramatic separation between those who attacked'the
problem Incrementally (Immediate or short-term payoffs were
considered) and those who had strategic plans for the problem
situation as a whole. Those who scored in between the two groups
made statements such as: "I had a rather vague plan, but I
couldn't follow through with it because so many unexpected possi-
bilities opened up as I played that I got distracted by attractive;
new prospects and deviated from the plan. Then things got too
confusing, so I gave up the plan and played incrementally."

28' June 1971
System Development Corporation ,

TM-4539/000/01

1.2

Those who scored highest seemed to have utilized intuitive pattern
recognition (both special and; abstract patterns) to structure the
problem apace and to make a rough estimate of cause-and-ef'fect
relation patterns. ^ '

It is our belief tha,t good planning and selectivity in asking
"what if" questions are ■■ related and that they are highly problem
specific. Cleverness in both activities seems to depend on ho«
astutely the subject discdms the idlosyncracles of the problem

. situations and takes advantage öf them in formulating his plans and
his "what1 if" questions. Such characteristics dictate ithat '
dynamic extensibility of machine functions is needed beyond the
predetermined set of machine functions; many of the relevant ques-

1 tiotts and much of the selective exploration cannot be; formulated
at; the time of the problem definition. Predetermined machine
functions, however^ should Include any machine assistance that will
make it easier for the man to express his tentative ideas and,
requests for exploration and to delegate certain decision functions
to the machine once ,they are defined and identified as useful.

• The subjects unanimously agreed that visual display of their per-
formance in graphic form and of environmental changes caused by
their actions was helpful in assessing previous decisions and |
formulating new. ones. However, more sophisticated techniques of
summarizing the current "state of the environment" are needed
to display information in a variety of formats and at varying
ilevels of aggregation. At one' point, the subject may be interested'
in the overall relational aspects; at another point, he may be
interested in detailed 'information -about one slmall portion of the
environment. Again, the need for dynamic definability of man's
ideas and requests became clear. »

UAL AS A STEP TOWARD MAN-MACHINE SYNERGISM i '

UAL; has been designed to fulfill the essential need for dynamic extensibility
demonstrated by the Shimoku experiments. This extensibility and other features
of UAL ate discussed in Section 2., ; '

i

An additional advantage can be gained by the use of UAL for the implementation
of Gaku. Traditionally, a system is implemented in one language, and another
language is specially developed to allow for user-oriented and/or problem-
specific expressions. We have,:instead, geared the design of UAL and associated
techniques to serve bpth purposes without the compromises that would usually
be required.' . ,

The basic UAL will be used for initial Gaku implementation and an extended
UAL will be used for user-Gaku Interaction and also for designer-Gaku ,

. i i

System Development Corporation
28 June 1971 4 TM-4539/000/01

Interaction In system modification. This will be possible through the use of
the extensible features of UAL and of the techniques of building problem-
oriented primitives from which higher-level, problem-oriented functions and
capabilities can be constructed for the users' convenience. Thus the basic
UAL can be used In the same manner as other programming languages but extended
UAL can be made Into a higher-level, English-like, and/or highly problem-
specific language, depending on the users' needs and convenience.

The extensibility of a language refers to its ability to modify Itself—that
is, its ability to create new primitive terms and functions and to define
new infix operators. This becomes important when the problem situation
dictates a new notation that the original language does not accept or when new
primitive terms and functions are required to reduce complexity. These new
terms and functions may not be known at the outset but, through interaction,
new ideas may be generated and the need for new terms and procedures realized.
Thus, extensibility permits dynanic definition.

With these features, the user can start interacting with Gaku from the initial
problem-conceptualization and problem-definition stage and continue to the
intuition-guided, hunch-generatlon-and-testlng stage of problem-solving (and
perhaps back to the problem-definition stage to repeat the process). The
conventional separation between the problem-definition and the problem-solving
stages caused by specialists or programmers, or by extra languages, is not
necessary. Gaku implemented on UAL can handle user-defined terms and procedures
directly, without Internal translation or mode changes, since expressions
in UAL are the batjic items that Gaku can understand, generate, and manipulate.
For partially-defined or ill-defined problems, the problem-definition stage
cannot be separated from the problem-solving stage because of the iterative
nature of the two. The former can be thought of as a model-building process
and the latter as model exercising, expeclally when the model includes a man
to provide the behavioral-procedural Information that was not known or could
not be made explicit at the outset. Gaku can bring these together by allowing
the undefined portions to be supplied by the user in the light of new informa-
tion and insight as supported by his own background knowledge and past experi-
ence. Use of the basic UAL in constructing Gaku and also in defining a given
problem environment is shown schematically In Figure 1.

Whenever a new problem environment is considered, the man first Introduces a
set of primitive terms and functions to UAL in order to establish a semantic
link between basic UAL and the problem environment. Once the semantic linkage
is established, the Gaku system, which is built on top of UAL, becomes a
problem-oriented or special-purpose system. Then, given that the primitives
are adequate, the man can communicate any statement or questions about the
problem environment and can define any operations in it. In Figure 1, this set
of primitives is represented by the solid box on the right.

In practice, however, it will be easier and more efficient conceptually if the
modeling system is equipped with higher-level terms and operations that are

28 June 1971

System Development Corporation
TH-4539/000/01

Gaku -• -Model System

"N r

Acquired Information and

Capabilities (problem-specific)

Information and Processes

Specific to the Problem

Environment.

Acquired Information and l

Capabilities (general) Problem-Oriented Terms and

Processes (higher-level)

Basic Gaku

executive system and

adaptive mechanisms

model

Problem-Oriented Primitives

(to establish semantic link)

Basic UAL (User Adaptive Language) (Problem Independent)

Figure 1. A schematic diagram depicting man-machine cooperative

endeavor in both defining a problem (or building a model)

and solving the problem (or experimenting with the model).

System Development Corporation
28 June 1971 6 TM-4539/000/01

more amenable to man's levels of thinking. Representing these Is a dotted
box labeled "Problem-Oriented Terms and Processes (higher-level)," placed
on top of the box of "Problem-Oriented Primitives." The model is built on
top of this. Dotted boxes imply that contents are subject to change and
expansion.

Intensive research is still required to make the semantic linkage as easy to
build as possible so that a user need not feel committed to his first choice
of primitives but can start with a "quick-and-dlrty" version to experiment
with and change it as he discovers its Inadequacies. After we have gained
experience by building primitives for a number of different problem types,
we may be able to extract a set of commonly used steps for primitive building.
From this, a set of "primitive-building primitives" may be made available for
a quicker and easier definition of new problems.

When model building becomes truly quick and cheap, man may be encouraged to
try out different formulations or representations of the same problem situa-
tion, thus gaining different viewpoints, one of which may reveal a lead to
an answer or to solution methods that could not have been discovered in any
other way.

_

System Development Corporation
28 June 1971 7 TM-A539/000/01

2. DESCRIPTION OF UAL (USER ADAPTIVE LANGUAGE)

The User Adaptive Language (UAL) Is a functionally oriented, extensible,
problem-solving language. In addition to many new concepts and ideas, the
language incorporates desirable features from existing languages in a unified
and consistent manner that makes them easy to use and learn. As well as being
user adaptive, the language is user oriented. It is hoped that UAL can be
effectively used by those not directly in the computing field.

UAL is designed to be used interactively through a remote terminal so that an
immediate response from the computer is received for each and every input.
Every expression is evaluated (executed) as soon as it is entered, rather than
being stored for evaluation at a later time. However, it is possible to
inhibit evaluation if desired. In addition to a number of available pre-
defined functions that aid the user in problem-solving, the language has five
different data types: (1) numbers, (2) character strings, (3) quoted expres-
sions, (4) argument maps, and (5) lists. "Character strings" are useful if
nonnumerlcal applications are involved. "Quoted expressions" and "argument
maps" provide a convenient, flexible, and powerful means of defining new
functions. These functions may be made English-like in use or compact and
stylized; they may be general-purpose functions or problem-specific primitives.
A "list" is composed of groups of data elements which can be treated as a
unit. Sublists and superlists can be formed into structures or networks.
These data types, coupled with predefined functions plus the rules for their
manipulation, make up the User Adaptive Language.

Some Important features of the language are summarized below:

• The basic data structure in UAL is the list. Elements in a list
may be numbers, character strings, other lists, or even functional
expressions. Thus, procedures may be stored and manipulated in
the same manner as simple data items. In adddition, two or more
lists may share members so that each is "aware" of a change in
the other.

• There are two types of assignment in UAL: pointer changing and
value changing. Each variable "points to" and is separate from
its value. Thus, either the value itself may be changed, or the
variable may be caused to point to a new value.

• Arbitrary functions and infix operators may be defined or redefined,
depending upon the user's preference. New terms and primitives
may be created to fit specific needs in a given problem situation
and to express complex ideas in a clear, readable fashion. The
user may also make his new functions general and more English-like.

r

System Development Corporation
28 June 1971 8 TM-4539/000/01

• The language is extensible, which means it is capable of redefining
its own parts. The user may change the action of any built-in
function or even the way expressions are processed after entry.

• The language is capable of supporting a semantic linkage for a
given problem environment by defining a set of problem-oriented
primitives. This allows more specialized problem-oriented languages
to be built upon it.

• The normal mode of UAL is evaluation. ' Expressions are evaluated
(executed) Immediately upon entry. This makes the language
naturally suited for interaction. However, a means is provided to
suppress evaluation when desired so that expressions may be stored
and subsequently manipulated without evaluation.

• A great deal of power and flexibility is provided for functional
definition. The user has control over argument evaluation, the
exact place where the function name is to appear, the scope of
variables, and other features that allow a large variety of func-
tions to be defined.

The user can specify directly to UAL environmental conditions that
describe the context within which he will work» UAL will not
allow these conditions to be violated and will warn the user if
he attempts to do so.

The language is described using a somewhat idealized character set for optimum
understanding of the concepts involved. UAL has been implemented at System
Development Corporation in Santa Monica, California on the IBM 360/67 ADEPT
time-sharing system (Linde, et al. [1969]) using LISP 1.5 as the source
language (Weissman [1967]).

2.1 BASIC ELEMENTS

The formation of numbers, variables, and character strings follows standard
rules. Numbers may be Integer or real, that is, with or without a decimal
point. Variables consist of one letter followed by zero or more letters or
digits. A character string is a sequence of characters enclosed in double
quote marks. In addition, a number of primitive functions are available for
forming arithmetic, relational, and logical expressions:

+ addition
- subtraction
* multiplication
/ division
* Integer division
t exponen t iat ion

System Development Corporation
28 June 1971 9 TM-4539/000/01

% percent
< less than
i less than or equal to
= equal to
* not equal to
a greater than or equal to
> greater than

■■ identical to
~ negation (not)
v disjunction (or)
& conjunction (and)
•♦ implication
= equivalence
£ nonequivalence

These functions are used with parentheses in forming expressions. Each has
an imposed precedence. (See Appendix B)

2.2 ASSIGNMENT

I • Values may be assigned to variables by using the assignment function, back-
arrow (•<-) . For example:

X-f-S

assigns the value 8 to the variable X. The above expression is read, "X is
defined as 8." The result of this assignment may be represented graphically
as follows:

\

The picture is intended to show that the variable X is separated from and
points to its value 8. If the number 8 were assigned to another variable,
that variable would point to a second representation of the number. For
example:

Y^8

Y

System Development Corporation
28 June 1971 10 TM-4539/000/01

It Is possible for two or more variables to point to the same value. For
example:

would reassign Y to the value that X has:

X Y

V 0
Since no variable points to Y's old value, it is lost and its storage space
may be reused. This "garbage collection" process occurs periodically as
the need arises.

The backarrow, then, causes a variable to point to a new value. It is also
possible to change the actual value itself. This, of course, means that
every variable which points to that value would also be changed. The
function that performs this operation is the double backarrow (■*■»■). For
example:

Y-M-9

may be read "Y is changed to 9."

X

The primitive function "is identical to" (--) may be used to test whether or
not two variables point to the same value. This function is stronger than
equals (»), which only tests for equality.

2.3 LISTS

A useful data type of UAL is the list. A list is a series of double-pointer
nodes. The left-hand side points to the value and the right-hand side points
to the next node. A variable whose value is a list points to the first node
in the list. The right-hand side of the last node points to an indicator
that signals the end of the list. To form a list, the elements are written
sequentially with no punctuation between them and are enclosed in braces.
For example:

XHl 2 3}

may be pictured as follows:

28 June 1971 11
System Development Corporation

TM-4539/000/01

i
i i i

In addition to the brace formation of a list, there is a predefined function
that causes a list to be formed from its arguments. The function is the comma.
The above list could have been equivalently specified:

X^l,2,3

It is sometimes necessary to have lists of numbers that are in arithmetic
progression. However, such lists may be too long to specify explicitly. A
shorthand notation for such lists is available. For example:

{2 5 ... 35}

The above list contains 2 as the first element, 5 as the second element, and
continues in this manner (that is, incrementing by 3's) until 35 is reached
or exceeded.

Sublists and superlists may be formed simply by nesting braces. In this event,
the left-hand side of the particular node will point to the first node of
the oublist. For example:

X^-U (2 3} 4}

would produce the following list:

System Development Corporation
28 June 1971 12 TM-4539/000/01

Individual elements of a list may be referenced by the locative functions ST,
ND, RD, and TH. Using the above example:

3 RD X produces 4

1 ST 2 ND X produces 2

Variables may be assigned to particular parts of a list simply by using I:he
assignment arrow and the desired locative functions.

Y "- 1 ST X

will point Y to the number 1, which Is the first element of the list X.
Since the locatives are actually functions, any expression at all may precede
them as long as an Integer Is returned as a value. Similarly, In the case of
lists, any expression at all may be placed Inside the braces. The expression
will be evaluated and the result used as the list member.

The Individual nodes of a list may be accessed with the node-locative functions
STN, NDN, RDN, and THN. These functions must be used when changing the value
of elements of a list.

Most primitive arithmetic and relational functions are defined to Iterate
over the elements of a list. For example:

3+{2 4} produces {5 7}

If two lists are used with these functions, their elements are taken one by
one In parallel from each list.

{3 5}+{0 2} produces (1 25}

If one of the lists Is short In elements. It Is extended with zeros or ones,

depending upon the particular function Involved.

The list of no elements at all Is called the "empty list" and may be written
In either of the following two ways:

{} ♦

2.4 EVALUATION

Evaluation occurs when an expression Is entered Into the computer through the
remote terminal. However, It may be desirable to Inhibit the evaluation of
all or part of the expression. In this way. It can be stored and saved for
evaluation at a later time. Any expression that is enclosed in single quote
marks will be Inhibited from evaluation. For example:

i I

System Development Corporation
28 June 1971 13 TM-4539/000/01

X«-VA+B'

produces the following:

x\
A+B

The expression A+B is inhibited; X-<- is not inhibited, so that the assignment
takes place. Later, if X is called upon to be evaluated, either alone or as
part of another expression, its value (that is, A+B) will be evaluated also.
The act of inhibiting is called "quoting" and may be done to any depth. In
addition to the quote-marks, there is a function that quotes the next complete
expression after it. It is the colon. The above example could also have
been written:

X^:A+B

The predefined function EVAL causes an extra evaluation each time it is used.
Extra evaluations may be necessary if an expression is quoted more than once.
The predefined function VALUE may be used to access the value of a variable
without evaluating it.

2.5 OPERATIONALS

An operational is a sequence of two or more expressions that is treated as a
group—that is, as one expression. The expressions in an operational are
enclosed in parentheses and may be placed wherever any other single expression
may be placed. For example, the following is an operational of three expressions;

(X^3 Y*-{1 2} Z^'ABC")

Since an operational is a single expression, it must have a single value.
By convention, the value of an operational Is the value of the first expression
in it. The value of the above operational is 3. In the following example, the
intention is to evaluate (B/3)*H and assign this value to A. However, the
assignment B-*-A is meant to be performed after the division by 3 but before
the multiplication by H:

A-KB/S B+-A)*H

The return value of an operational may be reset by using the function SETOP.
An Interrupt of the normally sequential evaluation of the expressions in an
operational may be caused with the function RETURN. An operational may also
be thought Af as a single expression followed by a series of side etfects.

28 June 1971 14
System Development Corporation

TM-4539/0ÖÖ/01

2.6 FUNCTIONS

A quoted expression is a simple function of no arguments and is evaluated When
its name is evaluated. To define a function with arguments, the bound variables
of that function must be listed, enclosed in brackets, [], and placed in front
of the quoted expression (function definition). The list of bound variables is
called the argument map. i

i

For example: , ,

F-KX Y] :X+Y+2

defines a function F of 2 arguments X and Y such that F equals X+Y+2i In order
to call F, its name should be given, followed by 2 arguments (expressions),!
either alone or in another expression. For example:

F 2 3 . '

would produce 7 as a result. No parentheses, commas, or other punctuation are
used in a function call. However, since a function name plus its arguments
form a complete expression, parentheses may be placed around the entire group.

The arguments may be any expression at all including other function calls,
A function always has as many arguments as bound variables in the argument map.
If a function is called with fewer arguments than it needs, a sufficient
number will be supplied. For example: i

(F 4)

would produce 6 with zero being supplied for Y.
■ i

2.7 ARGUMENT MAP ,

The argument map has many features that make function definition powerful and
flexible. i

An argument may be received in quoted form, even though it is hot explicitly
quoted at call time. This is indicated by placing single quote marks around ,
the bound variable in the argument map. For example:

i ,
F*-rx' Y]:(P«-X Q+Y)

The above function assigns its two arguments to P and Q, respectively, but asks
for its first argument in quoted form.

F A+2 3+2 . '

would assign the expression A+2 to P and the value 5 to Q.

-
;

:
i

System Development Corporation
28 June 1971 15 ' TM-4539/000/01

Function calls may be made more, readable by using,"noise words.'! These are
variables that are enclosed in parentheses alnd may be used as optional words
in the function call. For example: , , ;

, M0VE*-[(THE) X (FROM) Y (TO) Z]:definition ' , , • ,

The function MOVE could be called in either of the following two ways:

MOVE PIECE SQUARE1 SQUARE? ' I '

MOVE THE PIECE FROM SQUARE1 TO SQUARE2 ,
! i ,• .

i j i i

Functions may possess variables that do not pick up a value 'from an argument.
.These "local variables" are considered undefined every time the function is
called. They are listed after the regular bound variables and separated from
them by a semlcplon.1 In the following example, K is a local variable:

i ' ,

¥+[* YiVi]idefiniHon i ' '

All functions defined as described above 'are used in prefix form—that is,
the function name fi^st, followed by the list of arguments. It is possible
to cause the function name to appear anywhere among the arguments, by placing
a caret (A) at the point in the argument map where the name is to appear.
For example, suppose that two numbers are to be combined in a predefined'
manner. The, function that: performs this combination fcould be defined so
that its name appeared before, iln between, or after its two arguments: '
, K ' ' ' ,

. C0MBINE^[X (WITH) Y]:definition , i i

COMBINE 3 WITH 5 ' ' '
i ■ i ,

or

C0MBINED-<-[X A (WITH) Y]'.definition

3 COMBINED WITH 5

or

COMBINATIONx-U Y ^'.definition

i 3 5 COMBINATION

No noise words may precede the caret.

i i i | i

Function names may be picked up as arguments in character-string form by
enclosing the bound variable in the argument map between double quote marks.
For example: I

I+\"V"\'-definition.

i ■ .i

System Development Corporation
28 June 1971 16 TM-4539/000/01

This differs from picking up the argument in quoted form because the function
is not structured with its arguments into a complete expression—only the name
is passed.

It may be well to digress for a moment and explain that it Is to character
strings that assignment is made. The correct (and acceptable) form of the
assignment expression Is:

The double quotes may be omitted because the function ■*• has an argument map
that picks up its first argument in string form.

["X" AY): aaaign Y to X

If any other expression appears in the place where a string argument Is to be
picked up, It is evaluated normally. Consequently, Indirect assignment Is
possible. For example:

M^ "N"

assigns "N" to M, and

(M) i* 7

assigns 7 to N

Bound variables in a function have no connection or reference to variables
with the same spelling that may be defined outside the function. For example:

X*-4

F^[X]:XH

The bound variable X In the function F Is not the same X as the global or
free X defined above and given a value of 4. Only the variables listed Inside
the argument map are bound. If X appeared in the definition of F but did
not appear in F's argument map, then X would Indeed refer to the free X defined
outside. For example:

X-4

F-«-[Y]:X+Y

In this case, the X In the definition of F does refer to the X whose value
is 4.

System Development Corporation
28 June 1971 17 TM-4539/000/01

Once a variable has been bound, It may be necessary to refer to the free
variable of the same spelling. This is done by placing an exclamation point
after the variable name. For example:

X-«-A

F+tX]:X+X!

F 2 produces 6

A third type of variable, in addition to the bound and free variables, is the
globally bound variable. It is defined simply by placing an exclamation point
after any bound or local variable in the argument map. A globally bound
variable has the property that it will be bound not only in the scope of the
defining function, but also in any function that is called in which it occurs
free. For example:

X<-A

Ff[W X!]:X + G W

G-<-[Y] :Y+X

In the above example, G is defined to be a function of one argument, which
adds it to the value of the free variable X. A call to G, such as:

10 + G 2

would produce 16 as a result. However, F is defined with X as a globally
bound variable in a definition that calls G. This effectively binds the
X in G so that it is no longer referring to the free X.

F 2 10 produces:

10 + G 2 which produces:

22

In all of the examples given above, the expression that was the function
definition was specified explicitly as a quoted expression. The function
definition must be quoted, but it need not be given explicitly. For example:

Ti-[X Y]:SQRT X+2+Yt2

could be written as follows once EXPR is defined:

EXPR-^rSQRT Xt2+Y+2

F-KX Y] EXPR

System Development Corporation
28 June 1971 18 TM-4539/000/01

The expression EXPR must be quoted twice when written so that it will return
an expression when evaluated. In addition, the argument map Itself may be
saved by including a colon somewhere insic'ic the brackets.

ARGMAP+-[: X Y]

Now F may be defined:

F ♦ ARGMAP EXPR

The variables in the argument map ARGMAP are bound in the expression EXPR.

The argument map may be overridden at call time by explicitly specifying the
number of arguments a variable is to possess. If the argument-forcing option
is used, the function call must be in prefix form without any of the features
normally available in the argument map. The number of arguments follows the
variable name and is separated from it by a semi-colon. For example:

G;3 argument argument argument

causes the function G to pick up 3 arguments regardless of its current
definition.

Argument forcing is useful for functions that have not yet been defined, for
functions that are intended to be redefined, or for forcing a function to
pick up more arguments than its definition allows. In the latter case, the
values of the extra arguments are assigned respectively to any local variables
the function may possess.

The function definition may be any expression at all, including other function
definitions. For example:

F<-IX]: G^[Y]: YfX

In the above example, F is a function of one argument X, which, when called,
defines another function G of one argument Y. The function G Is not defined
until F is called for the first time. Notice that the variable X Is free
in G but bound in F. The expression

F 4

would define G as YtA. Every time F is called, G is redefined.

A function could contain Instructions to redefine Itself:

F«-[N];(1/N F*-[X]:X/N)

System Development Corporation
28 June 1971 19 TM-4539/000/01

The above function returns 1/N on the first call and X/N on every call after-
ward. The following example shows a function F that redefines itself after
every call:

G-<-[Y]:F^[X]:G Y+X

2.8 STATE CONDITIONS

A state condition is a declaration of the environment In which further investi-
gation is to take place. In order to specify a state condition, the user sim-
ply encloses any UAL expression between vertical bars. The expression is
evaluated at the time it is specified and returns a value of true or false
according to the current state of affairs. From that time on, however, no
actions will be allowed that would cause the state condition to become false.
For example:

|-l<FACTORSl|

If, after the above specification, an attempt were made to redefine FACTOR
outside the given range:

FACTORS. 8

the redefinition would not occur and FACTOR would retain its old value.

The user may specify many state conditions that are active simultaneously
either in a global context or local to a particular function.

2.9 BUILT-IN FUNCTIONS AND LANGUAGE EXTENSIBILITY

UAL has a vast number of helpful built-in functions. The functions fall
into the following groups: arithmetic expressions, logical expressions,
relational expressions, list manipulation, evaluation. Iteration, conditional
expressions, input/output, function editing, and function debugging.

The Iteration function is FORALL. This function evaluates an expression once
for each member of a specified list and returns a list containing the result
of each evaluation. For example:

FORALL Xc{l 2 ... 50} 2tX

returns a list of powers of 2 from 1 to 50. The variable X in the above
example is a control variable that assumes successive values from the specified
list during iteration. The control variable is optional and has the status of
a local variable throughout the scope of the FORALL function.

System Development Corporation
28 June 1971 20 TM-4539/000/01

There are also options for skipping elements of the specified list or prematurely
terminating the Iteration. They are WHENEVER, UNLESS. WHILE, and UNTIL. Each
of these functions must be followed by a logical expression and controls the
Iteration In a different manner. WHENEVER prohibits evaluation when Its
logical expression Is false; UNLESS prohibits evaluation when Its logical
expression Is true. WHILE and UNTIL terminate the Iteration when their logical
expressions are false and true, respectively. Any number of the qualification
functions may be used In a FORALL and In any order. They must appear
Immediately after the specified list when used. For example;

FORALL leDATA WHENEVER I<0 I-^K)

places a lower limit of zero on the elements of the list DATA.

Conditional expressions may be formed using the IF function of two arguments,
which evaluates an expression only If the outcome of a given logical expression
is true. The IFE function of three arguments evaluates one of two expressions,
depending on whether the given logical expression is true or false. For
example:

IF FLAG-'W & 0SX<1 THEN (Xt2 FLAG-<-"0FF")

GRADE^-IFE SCORE>70 THEN "PASS" ELSE "FAIL"

The noise words "THEN" and "ELSE" are optional.

For the input/output group there are, among others, a PRINT function that
causes values and lists tc be printed and a READ function that requests an
expression to be entered at the terminal. The expression is evaluated and
the result returned as the value of READ. The function READQ treats the x

input as though it were a quoted expression. Through the use of these
functions, new supervisors may be defined that handle input in nonstandard
ways. For example:

FORALL LOOP EVAL PRINT READQ

echos back the input before evaluating it normally.

PROGRAM^-FORALL LOOP UNTIL (EXPR*-READQ)-VEND' EXPR

EXPR stores a list of quoted expressions into PROGRAM for later evaluation.

As shown above, the user may create an indefinite number of iterations with
the predefined variable LOOP.

28 June 1971 21
System Development Corporation

TM-4539/000/01

LOOP

\&

UAL has no special forms or special functions that are handled differently
than user-defined functions. If the user is not satisfied with the operation
of a particular function, he is free to redefine it to suit himself. For
example: -:,.

+ -<- [X A Y]:(X-Y)t2 '

The above example redefines + to return (X-Y)t2 rather than X+Y.

7+3 produces 16

or, + could be redefined as follows:

+ ■»- [X A Y]:(SUM X,Y INCREMENT C)

where SUM is a built-in function that adds elements of a list and INCREMENT
is a function that adds 1 to a variable. The redefined + still adds X and Y,
but it also keeps track of the number of additions that have been made.*

UAL, then, is extensible, which means that it is capable of redefining its
own parts. (For other extensible languages, see Christensen and Christopher
[1969], and Smith [1970].)

2.10 THE CONTROL CHARACTER #

The character # is a metacharacter used to control the input line that is
being typed on a remote terminal keyboard. A carriage return is enough to
enter a line for evaluation. The current input line, may be deleted by typing
followed immediately by the letter D.

The function + could not be used in its own definition in this case, since
that would have produced a recursive function.

System Development Corporation
28 June 1971 22 TM-A539/000/01

1+2+3+//D4+5

enters only 4+5. A specific number of immediately previous characters may be
deleted by typing one or two digits after //:

V+W+X+Y+//5+Z

enters V+W+Z. Comments may be placed anywhere (even inside numbers and
variable names) as follows:

#[aoment]#

The current input line may be edited character by character if a mistake is
detected before the line is entered. The // is followed by two character
strings separated by a comma and enclosed in parentheses. The current input
line is scanned for the first occurrence of the first character string and,
when a match is made, the duplicate is replaced by the second character string.
For example:

F<-[X Yl:X+Y+Z#("YV'Z")

would enter the line as if It had been written

F*-[X Z]:X+Y+Z

A second example:

QUES^'WHERE ARE Y#("ERE,,,"0,,)OU?"

would enter as:

QUES^'WHO ARE YOU?"

Omitting the comma and second character strings deletes the match when found.
A number may precede the first character string to indicate the occurrence.

WE","N'T")

matches the fourth occurrence of E.

The example above would enter as:

QUES^'WHERE ARN'T YOU?"

System Development Corporation
28 June 1971 23 TM-4539/000/01

The following list gives the possible characters that may appear after the
control character and their meanings.

#D Delete all of the current Input line so far.
#C Request for one continuation line.
#[Begin Comment.
//] End Comment (also may be]//).
#(Begin Edit Field.
#W Walt - Request for an indefinite number of continuation lines.
#E Evaluate - Process the input regardless of how many continuation

lines have been requested.
#P Print out the current input so far and request one continuation line.
#! The # character itself.
##hh Enter the character with hexadecimal representation hh.
#dd Delete dd characters back. (One or two digits may be specified.)

2.11 PREDEFINED FUNCTIONS

Many predefined UAL functions are available to the user. The argument map
and a description of the definition is given with each function below. The
type of argument required Is indicated by its letter.

N - Number
I - Integer
L - List
S - Character string
V - Variable name
R - Relational or logical expression
X - Any expression

Any expression may serve as an argument for the above types as long as the
value returned is of the correct type.

Arithmetic Expressions:

SQRT-^N]: square root
SUM-*-[L]: adds elements in the list L
SDHM]: sine
COS-< [N]: cosine
ARCTAN^[N]'. arctangent
LO&«-[N]: log to the base 10
EL0G-«-[N]: log to the base e
EXP-«-[N]: en

MAXIMUM-*-[L]: maximum element in L
MINIMUM-f-tL]: minimum element in L
INCREMENT^"V"]: adds 1 to V
DECREMENTS"V"]: subtracts 1 from V
C0NVNS-<-[N]: converts N to a character string

28 June 1971
System Development Corporation

24 TM-4539/000/01

Character Strings:

C0NCAT*-[S1 (AND) S2]: string concatenation
CHAR-<-[I (IN) S]: selects Ith character from S
EXPL0DE-4S]: returns list of single characters of S
COMPRESS-«-[L]: concauenat is elemencs of L
CONVSN-«-[S]: converts S to a number if possible
NAME*-[SJ: converts S to a variable

Logical Expressions:

TRUE«-!

FALSE-Hi)
CONV01^[X]: interprets an expression as true or false (0 or 1)

Lists:

C0PY-<-[L]
A L]:

A L]:

copies list L
selects Ith element of L

returns remainder of list L from Ith element on

ST^[I
NIh-ST
RIRST
THH-ST
ON«-[I
STN-K)N
NDN-K)N
RDN-K)N
THN-K)N
APPEND«-[L1 (AND) L2]:
LAST«-[L]: last element of L
LENGTIH (OF) L]: number of elements of L
J01N«-(L1 (AND) L2]: attaches L2 at node LI.

appends L2 onto the end of a copy of LI

Evaluation:

EVAL-<-lX]:

VALUER "V"l:
EVALST-KS]:
QU0TE«-[X1:

Operationais:

RETURN«-:
RETURNR«-[X]:

SET0P«-IX1:
OPVAL«-:

evaluates X
returns what V points to without evaluating V
forms an expression out of the string S and evaluates it
evaluates X and quotes the result

premature return from an operational (abbreviated RET)
premature return from an operational with the result

(abbreviated RETR)
resets the value of an operational
current value of the operational

28 June 1971 25
System Development Corporation

TM-4539/000/01

Conditionals:

IF*-[R (THEN) VX']: evaluates X if R is true
IFE*-[R (THEN) VX1' (ELSE) KX2']: evaluates XI if R is true and X2 if R

is false

Iteration:

FORALL<-[L (DO) VX']:
WHENEVER^-[R VX']:
UNLESS*[R "X'J:
WHILEt-[R "X']:
UNTIL-<-[R "X'l!
IN-^fV" AL]:
LOOP*-:

iterates X for each element of L
returns X if R is true, and "SKIP" if R is false
returns "SKIP" if R is true, and X if R is false
returns X if R is true, and "STOP" if R is false
returns "STOP" if R is true, and X if R is false
returns {"IN" V L}
list of indefinite number of elements

State Conditions:

STATES-*-;
DELSTATE-^tl]:

Input/Output:

READ*:
READQ*:
READST*:
SPECIFY*-["V"]:
PRINMX]:
OUTPITMX]:
STASHf[Xl:

PRINTOFF*:

PRINTON-»-:

prints out a list of state conditions with reference numbers
deletes state condition number I

returns an evaluated expression from the terminal
returns a quoted expression from the terminal
returns terminal input as a character string
asks for an input from the terminal and assigns it to V
formatted print
unformatted print
holds X until the next PRINT or OUTPUT is called, then
outputs X
deactivates automatic printing of value of every expression
that is entered
activates automatic print

Debugging:

LINEPR0MPT4-[S]:changes line prompt to string S
STACKSTATUS-«-: prints out current status of waiting argument stack
FREESPACE-*-: calls garbage collector and prints out number of words of

freespace left
FREE-*-["V"]: returns variable V to free storage
MORENAMESPACE-«-:gets more space for variable names
TYPE-<-[X]: gives type number of X

Protection:

UNPR0TECH-["V"1:
PROTE(n>["V"l:

unprotects variable V for redefinition
protects V

I

I

„- . ,._, System Development Corporation
28 June 1971 26 TM-4539/000/01

3. USE OF UAL; AN EXAMPLE

3.1 PO&M SYSTEM (PLANNING ORGANIZATION AND MANAGEMENT SYSTEM)

The following example is taken from "An On-Line Interactive Hierarchical
Organization and Management System for Planning," [Kleine and Cltrenbaum,
19701.

The problem is that of convention planning. Let us suppose that a chairman
has already been selected for setting up a large convention or conference.
The chairman, possibly with other co-chairmen and assistants, now proceeds <
to define a number of areas of responsibility or activities that can be
delegated to other individuals. He might define the areas such as "publicity"
and "accommodations" and assign individuals to head the areas and their
assistants. These heads, who have been appointed by the chairman, may
themselves delegate portions of their tasks to their subordinates. Thus a
hierarchical structure results, with "nodes" representing subdivided areas
of activities.

A representative hierarchical organization created by a planning group to
meet the needs of convention planning is shown schematically in Figure 2. 'jj
Here the CHAIRMAN has set up a CHAIRMEN'S COMMITTEE and TREASURER, PUBLICATION,
MEETING ROOM, PUBLICITY, and LUNCHEON ACTIVITIES. He will define the duties
and responsibilities of each Activity, name a head and staff members as
appropriate, and communicate with and request reports or information from thfm
as the planning proceeds. He will also create additional Activities as the
need arises and delete those whose work is completed. The TREASURER establishes
formal communications and reporting relationships with the major Activities,
and PUBLICATIONS sets up a subactivity, PRINTING, which PUBLICITY also uses
for its printing needs.

Formalizing the Concept of Activity. Let us consider the elements needed
in the PO&M system in order to assist the planners in setting up their
organization and communicate within it. First, all of the information which
might be associated with an activity is listed (Figure 3). This includes ,
the name or title of the Activity; a description of the job to be done by
that Activity; a status indicator to tell others whether the activity is
unstarted, finished, working, or waiting. It also includes a set of links ,
connecting the Activity with superiors, subordinates, and associates on the
same level. These links are used for normal instructions, reports, and
communications. Communication can take place outside of these channels, but
automatic distribution of Information down through the organization and the ,
forwarding of reports upward takes place along these lines.

28 June 1971 27
System Development Corporation

TM-4539/OOO/OI

'

'

pa

a>

'I
^

(1

(1

System Development Corporation
28 June 1971 28 TM-4539/000/01

ACTIVITY

NAME

DESCRIPTION

STATUS

LINKS:

SUPERIOR:

PARENT: LINK, NAME, FORWARD, DATA

OTHERS

SUBORDINATE

LATERAL

MEMBERS: HEAD, OTHER MEMBERS

DURATION

RESPONSE: REQUESTED, EXPECTED

TASK_INPUT

TASK_OUTPUT

DATA

GROUP

NAME

LINKS: SUPERIOR, SUBORDINATES, LATERAL

MEMBERS:

Figure 3

System Development Corporation
28 June 1971 29 TM-4539/000/01

Each of the three communication-link types consists of groups of links. The
first of the superior links is the parent or direct superior link. Each link
is itself made up of a link-pointer, which points to the associated activity;
the name of the linkage; an indicator whether information Is to be auto-
matically forwarded along this path; and any data and/or textual Information
used with this communication link. MEMBERS is also a group in which each
element is an individual member of the group associated with the Activity.
The head of the group is listed as the first member and, if there is no head,
that position is left empty.

DURATION is the best estimate of the total duration of this Activity. RESPONSE
is composed of two parts: (1) REQUESTED, the response interval requested
by the inquiring party, and (2) EXPECTED, the anticipated interval before this
Activity responds to the inquiry. The TASK_INPUT Is a combination of data
and/or text information specifying the task requirements of this activity.
Similarly, TASKjOUTPUT contains the results of the Activity's work, and DATA
contains information accumulated for use in accomplishing the Activity's
tasks. (For the sake of readability, the underline character will be used
in the formation of variables and should be considered a letter.)

Organizational Elements. A given activity may not need or make use of all
of the elements described above, but all categories remain available for use
as required. Organizational types other than activities—such as groups—
can be accommodated using some sublist of the elements in an Activity:

Designer/User Notation. A system can be built in UAL from the above general
PO&M system requirements. Two types of instructions will be given in the
language: the "system designer" will write instructions to build up the
elements of the system, and the "project organizer" (the user) will write
instructions in the new language of the augmented UAL system—that is, la
the language of the UAL that has been augmented with PO&M system-building
functions.

3.2 PRIMITIVE FUNCTIONS AND BUILDING BLOCKS FOR PO&M SYSTEM

In the following figures, the system designer's instructions will be in
capital letters and those of the organizer-user will be in capitals with
each instruction line set off with an asterisk. The designer will Initially
need to formalize the concept of an Activity and the elements of which it is
composed. This can be done by treating an Activity as a list of data elements,
some of which are lists themselves.

Figure 4 shows an example of the CHAIRMAN organized as an Activity. The
lines represent the links of the Activity with other Activities and with
Individuals and their records. The entire Activity list is a rigidly formatted,
non-user-oriented structure. It is necessary, for example, to ask for the

28 June 1971 30
System Development Corporation

TM-4539/000/01

V I

77\ pure 4

System Development Corporation
28 June 1971 31 TM-4539/000/01

value of the third part of an Activity in order to determine its status.
The first step, then, in system design is to enable names to be used to access
each part of an Activity while leaving the structural integrity of the Activity
as a whole undisturbed.

■

Use of Names for Structure Parts. In Figure 5, NAME is defined as an expression
that, when applied to an Activity ACT, will yield as its value the first or
name part of that Activity. If NAME were applied to the chairman's Activity,
if. would yield "CHAIRMAN" as the value for the expression. Similarly, DESC
and STATUS yield the description and status parts of an Activity. The list
of superiors is the first item of a three-part list, which, in turn, is the
fourth part of the Activity. The "parent" is the first item of the list of
superiors, and so forth.

In a similar fashion, each of the elements or collections that make up an
Activity is defined in a way that permits those elements to be referenced by
name rather than by location within the structure.

Note that the definition of SUPERIOR has a "TO" inside the argument map.
This permits the word to appear optionally in each use of the functional
operator "SUPERIOR." For example, one could write SUPERIOR PUBLICATIONS or
SUPERIOR TO PUBLICATIONS. Making use of these basic expression definitions,
the designer can now build higher-level expressions.

Defining Activity-Creating Functions. One of the first things a user will
want to do is to create one or more Activities. The first definition in
Figure 6 permits this. The expression CREATE A CHAIRMAN creates the Activity
CHAIRMAN, sets the name to be the word "CHAIRMAN", sets the status to "NOT
STARTED", and leaves the remainder of the Activity's structure temporarily
undefined. It also makes the Activity just created the value of CURJTITLE
(current title). The instruction WITH modifies the Activity that is the
CURJTITLE by inserting a name at the beginning of the MEMBERS list so that the
name will be treated as the Activity head.

The function MEMBERS allows specification of the members other than the head.
The function MAKE operates on two arguments and can insert a given name or
value into any given position of an Activity. The last function, REORGANIZE,
changes the Activity that is the CURJTITLE and, therefore, the Activity that
is changed by the WITH and MEMBERS instructions. With this handful of
definitions, the user can write any of the instructions shown at the bottom
of Figure 6, as well as an extensive number of others made up of various
combinations of the newly created instructions.

"Top-Down" vs. "Bottom-Up" Approaches. The above is an example of "bottom-up"
system design. Basic expressions were defined, and, out of these expressions,
successively higher-level, user-oriented functions were defined. We will
turn now to the capability of reversing this procedure in UAL.

System Development Corporation
28 June 1971 32 TM-4539/000/01

ACTIVITY

{NAME DESC STAT {SUP SUB LAT} MBRS DUAR RESP INPT OUTPT DATA}

NAME-4(0F)ACT]: 1 ST ACT

DESC'<-[(OF)ACT]: 2 ND ACT

STATUS^[(OF) ACT]:3 RD ACT

SUPERIOR^[(TO) ACT]: 1 ST 4 TH ACT

PARENT^[(OF) ACT]: 1 ST 1 ST 4 TH ACT

SUBORDINATE-^ (OF) ACT]: 2 ND 4 TH ACT

ASSOCIATE-^ (OF) ACT]: 3 RD 4 TH ACT

HEAD^[(OF) ACT]: 1 ST 5 TH ACT

MBRS-'-UOF) ACT]: 2 ON 5 TH ACT

CMn>[(OF) ACT]: 5 TH ACT

DUAR • • •

RESPR

RESPE

TASK_INPUT

TASK_OUTPUT

DATA

Figure 5

>

>..

System Development Corporation
28 June 1971 33 TM-4539/000/01

CREATE + [(A) "TITLE"]: CUR-TITLE *- TITLE, 0, "NOT STARTED"

WITH •*■ ["NAME" (AS HEAD)]: (HEAD OF CURJTITLE) *■ NAME

MEMBERS + ["MEMB"]: (MBRS OF CURJTITLE) ■«- MEMB

MAKE *■ ["NAME" (A) POSITION]: (POSITION) ++ NAME

REORGANIZE ■*- [(THE) "ACT"]: CURJIITLE ^ ACT

* CREATE A CHAIRMAN

* MAKE MR_ K HEAD CHAIRMAN

* CREATE A CHAIR_COMMITTEE WITH MR_ A AS HEAD MEMBERS MR_ B, MR_ C

* MAKE CONTROLLER SUPERIOR TO PARKING

* REORGANIZE THE PUBLICITY COMMITTEE WITH MR D AS HEAD

Figure 6

System Development Corporation
28 June 1971 34 TM-4539/000/01

"Top-down" design begins with the final desired expression form and then breaks
that down into its constituent parts until there are no undefined parts.
The user can indicate, for example, that he would like to be able to say "WHAT
IS THE VALUE OF THE PUBLICATION "TOTAL-EXPENSES", and get an automatic
response from the system, if the PUBLICATION group has defined its total
expense in some form (see figure 7). The designer can start out by defining
WHAT, a function that will be expected to find the definition that PUBlilCATiON
has created for its total expenses. After writing the definition for WHAT,
the designer can later complete the definition of any of the undefined parts
of the expression. In this case, since EXPRESSION is undefined, a definition
for it is provided next. Finally, the function DEFINE is defined. This last
function can be used to add values or value-expressions to the TASKjOUTPUT
of an Activity where they can be automatically interrogated by a superior
Activity. An example of this is shown at the bottom of Figure 7.

Use of Expressions Defined by Other Activities. The chairman»requests
PUBLICATION to set up and keep current a best estimate of total costs.
PUBLICATION does this and defines it based on its costs and the best cost
estimate of the PRINTING subactivity. Now, when the.Chairman interrogates
PUBLICATION for total costs, not only will PUBLICATION calculate its costs and
automatically respond, but PUBLICATION will automatically ask PRINTING for
its current best estimate of costs.

- i

MEMO Communications. The last area the system designer will deal with is
communication. There are three types of communications or MEMO's; instructions,
notes, and reports. Instructions are MEMO's from a superior to a subordinate;
reports are MEMO's from subordinate to superior; notes are lateral flows of
information. If not otherwise specified, MEMOfe are of the same type as the
relationship. For example, if an Activity sends a MEMO to a subordinate, it
is an instruction unless otherwise indicated. Reports are automatically
forwarded upward through those Activities designated by the user. Similarly,
Instructions are distributed downward automatically under the control of
forwarding instructions. Although the report is the default MEMO from a
subordinate, the subordinate may, if he wishes, specifically send a note to
his superior in order to directly communicate information that he did not
wish to be forwarded. In a similar fashion, notes or even reports can be
sent.

Setting Up Basic Communication Functions. An example of the type of definitions
needed for communication is shown at the top if Figure 3. The head of an
Activity may wish to have an instruction that will give him all his messages
when he checks with the system. Such a function is CHECK_IN. The second
definition for CHECK_IN (shown after "of:"), instead of printing all MEMO's
received to date, prints those now in the TASK_INPUT, and then transfers
these to a MEMO-llst for a record of past MEMO's. He could even use a MEMO-
checklng function, which automatically checks for MEMO's at regular hours of

A

28 June 1971 35
System Development Corporation

TM-4539/000/01

TOP DOWN

* WHAT IS THE VALUE OF THE PUBLICATION "TOTALJIXPENSES"

WHAT +■ [(IS THE VALUE OF THE) ACTIVITY LABEL] :

EXPRESSION FOR LABEL OF VHE TASK_OÜTPUT OF ACTIVITY

EXPRESSION *- [(FOR) LABEL (OF THE) LIST]:

FORALL ITEMS IN LIST IF (NAME OF ITEMS)»LABEL THEN RETURNR 2 ND ITEMS

DEFINE *• ["LABEL" (TO BE THE) VALUE]:

(DATA OF MY ACTIVITY)*-«- LABEL, VALUE ■ ;

CHAIRMAN

* MEMO FOR PUBLICATION_COMM.ITTEE : "SET UP TOTAL_COSTS COMPUTATION"

PUBLICATION

* DEFINE TOTAL_COSTS TO BE THE SUM OF COST_OF_MATERIALS, COST_OF_PREPARATION,
COST OF DISTRIBUTION + WHAT PRINTING TOTAL COSTS

- ~ r
CHAIRMAN

* WHAT IS THE VALUE OF THE PUBLICATION "TOTAL EXPENSES"

AUTOMATIC SYSTEM RESPONSE

2137

Figure 7

28 June 1971 36
System Development Corporation

TM-A539/000/01

H
CO

to
Q

M >
M
H

W

Si

o

«'
3

tu
o

- B
co
Q

s S g i
M M

s >
M «'
G 53 s

Ml <i H to

53 ss' z
M

H to CO

00

I
•rl
to

H

OS

g
z

53 £
tl z u & I

O

g

M

o

g

U

5

System Development Corporation
28 June 1971 37 TM-A539/000/01

the day and, based on the anticipated contents, takes appropriate action—all
without direct intervention.

The foregoing is intended to be not an exhaustive development of the PO&M
system but an indication of (1) the type of system that could be developed,
(2) the instructions needed to establish such a system, and (3) the power
and flexibility of UAL in building other, quite different systems on top of
itself, complete with a modified supervisor, new vocabulary, and altered
language syntax.

System Development Corporation
28 June 1971 38 TM-A539/000/01

REFERENCES

Bell, J. "TransformatIons: The Extension Facility of Proteus," in Christensen, C.
and C. J. Shaw (editors). Proceedings of the Slgplan Extensible Languages
Symposium. May 1969, pp. 27-31. ~ "

Bennet, R. K. "The Design of Computer Languages and Software Systems: A Basic
Approach," Computers and Automation. Vol. 18, No. 2 (1969), pp. 28-33.

Christensen, C, and J. S. Christopher (Eds.). Proceedings of the Extensible
Languages Symposium, sponsored by the Special Interest Group on Programming
Languages (SIGPLAN), Association of Computing Machinery, Böston Massachusetts,
1969.

Dahl, 0. J. and K. Nygaard. "SIMULA - An ALGOL-Based Simulation Language,"
Communications of the ACM, Vol. 9, No. 9 (1966), pp. 671-678.

Gauthler, R. L. "PL/l Compile Time Facilities," Datamation." Vol. 14, No. 12
(1968), pp. 32-34.

Hawkinson, L., S. L. Kameny, C. Welssman, et al. LISP 2. A series of documents
produced in performance of contract AF19(628)-5166 with the Electronics Systems'
Division, Air Force Systems Command, 1966. '

Hermann, A. M. "Programs for Machine Learning, Part I," Information and Control,
Vol. .5, No. 4 (1962), pp. 347-367.

Hormann, A. M. "Programs for Machine Learning, Part II," Information and Control,
Vol. 7, No. 1 (1964), pp. 55-77.

Hormann, A. M. "How a Computer System Can Learn," IEEE Spectrum,, Vol. 1, No. 7
(1964), pp. 110-119.

Hormann, A. M. "Gaku: An Artificial Student," Behavioral Science, Vol. 10, No. 1
(1965), pp. 88-107.

Hormann, A. M. Designing a Machine Partner—Prospects and Problems, SDC document
TM-2311/003/01,'1965.

Hormann, A. M. A New Task Environment for Gaku Teamed with a Man, SDC document
TM-2311/003/00, 1966.

Hormann, A. M. Problem Solving and Learning by Man-Machine Teams (Summary of
Current and Projected Work), SDC document SP(L)-3336/000/02. i

i '

I

I

I

i System Development Corporation
28 June 1971 , , 39 , TM^539/000/01

;

' Hormanh mann, A. M. Application Problems of Man-Machine Techniques, SPC document
TM(L)-A452, 19697* ' '] ; #.

Hormann, A. M. Planning by Man-Machine Synergism: A Characterization of
Processes and Environment,'SDC document SP-3484, 1970.

Irons, E. T. "The Extension Facilities of IMP," in Christensi.n, C. and C. J.
Shaw (editors), Proceedings of the Sigplan Extensible Languages Symposium,
May 1969, pp. 18-19.

1 1

Iversoh, K. E. A Programming Laiiguage, New ^ork: John Wiley and Sons, 1962.'

Kleine, H., and R. L. Cltrenbaum. An On-Line Interactive Hierarchical Organi-
zation and Management System for Planning, SDC documänt SP-3482, 1970.

' g
Knowlton, K. C. "A Programmlers Description of L ," Communications of the ACM,

Vol. 9, No. 8 (1966), pp. 616-625.

Knuth, D. E., and J. L. McNieley.' "SOL - A Symbolic Language for'General Purpose
Systems Simulation," ItJEE Transactions og Electronic Computers, Vol. EC-13,

' No. 4 (1964), pp. 401-408. ' '

Linde, R. R., C Weissman, and C. E. Fox. The ADEI'T-SO time-sharing system,
1 System Development Corporation, Santa Mopica, California, 1969.

1
1

Landin, P. J. "The Mechanical Evaluation of Expressions,", The Computer Journal,
Vol. 6, No.. 2,(1963), pp. 134-143.

, Markowitz, HF, B. Hausner, and.H. Karr. SIMSGRIPT, A Simulation Programming
Language,. Englewood Cliffs, New Jersey: Prentice-Hall Inc., 1963.

i >' . ; 1

Marschak, Jacob. , "Economics of Language," Behavio,ral Science, Vol. 10, No. 2
(.19,65), pp. 135-140. >

Mooers, C. N. "TRAC A Procedure-Describing Language for the ^actiye Typewriter,"
Communications of the ACM, Vol. 9, No. 3 (1966),, pp. 215-219. ' ■ '

Shaw, Jl C.i "JOSS: A Designer's View of an Experimental On-Line Computing
System," AFIPS Conference'Proceedings, Vol. 26, Fall Joint Computer Conference
(1965), pp. 455-464. ■ , '

! I

I I , ' , ■ . ■ 1

Smith, D. C. MLISP, Stanford Artificial Intelligence,Project, MEMO AIM-135,
Report Number CS-179, Computer Science Department, Stanford University, 1970.

* This SDC document is not'available for distribution outside the corporation

1

1
1

1 i '

System Development Corporation
28 June 1971 A0 TM-4539/000/01

Strachey, C., £t al. "The Main Features of CPL," The Computer Journal. Vol. 6,
No. 4 (1964), pp. 308-320.

Thompson, F. B., £t al. "REL: A Rapidly Extensible Language System," Proceed-
ings of the 1969 ACM Conference.

Van Wljngaarden, A., B. J. Mailloux, J. E. L. Peck and C. H. A. Koster.
"Report on the Algorithmic Language Algol 68," The Mathematical Centre,
Vol. 49, No. 2e: Boerhaave-straat, Amsterdam, MR101, Jan. 1968.

Weissman, C. LISP 1.5 Primer, Belmont, California: Dickenson Publishing Company,
1967.

28 June 1971

System Development Corporation
Al TM-A539/000/01

APPENDIX A

A UAL TERMINAL SESSION

-■•

The following is taken from a demonstration of UAL on the IBM 360/67 ADEPT
Time Sharing System using an Execuport 300 terminal. (See Appendix B for
minor character conversions.) The session covers expression formation,
character string manipulation, assignment, list manipulation, operationals,
evaluation and inhibiting, extensibility and protection, function definition
and argument maps, conditionals, Iteration, argument forcing, input/output,
state conditions, the control character #, and function defining functions.
User inputs occur after the preset lineprompt of //. Computer replys are
indented except in the case of a non-formatted print.

21+A5
66

$+2
68

5+3
125

5.8-3.74
2.06

50/2*5
5.0

4<7

exyreseion formation

$ contains value of last expression

true=2 falBe=0

5>5

5>=5
1

"HELLO"
HELLO

CONCAT "HELLO" " THERE."
HELLO THERE.

ahamater strings

28 June 1971 42
System Development Corporation

TM-4539/000/01

// '"

EMPTY STRING

"A""A"
A"A

getting " oharaoter into a string

// 'V+l
6

automatic oonversion

"5 FEET'^l
6

// A^7 assignment

it A

B^7

A-B

// A--B
0

B*-A

A--B
1

A-M-8

8

B

28 June 1971
System Development Corporation

43 TM-4539/000/01

« {1 2 3}
LIST

1
2
3

END

2 ND (2 4 6}
4

{1 2 {4 5} 6}
LIST

1
2
LIST

4
5

END
6

END

2 ND 3 RD $
5

4 TH {7 8}
NO VALUE

liste

EMPTY LIST

3 ON U 2 3 4}
LIST

3
4

END

APPEND {1} {5 6}
LIST

1
5
6

END

28 June 1971
System Development Corporation

44 TM-4539/000/01

#{24... 10}
LIST

2
4
6
8

10
END

LHl 3 5 7}
LIST

1
3
5
7

END

jH E^3 RD L
5

E^6
6

// L
LIST

1
3
6
7

END

» (3 RDN L)~-10
10

L
LIST

1
3
10
7

END

E
10

28 June 1971
System Development Corporation

^5 TM-4539/000/01

K^(PRINT "A" PRINT "B" PRINT "C") operationals
A
B
C
A last A is value of entire expression

K

REPRINT "A" PRINT "B" SETOP "C" PRINT "D" RET PRINT "E")
A
B
D
C

K

// Dl-(-5
5

DZ^'Dl'
EXPRESSION

D2
5

D3^:D2
EXPRESSION

D3

evaluation and inhibiting

The word EXPRESSION is substituted for
the printout of the value when it would
be a simple repeat of the input.

D4*-::D3
EXPRESSION

D4
D3

EVAL D4
5

System Development Corporation
28 June 1971 46 TM-4539/000/01

P+-VALUE + extensibility and protection
UAL PRIMITIVE

3 P A
7

Üf -H-l?
♦• ASSIGNMENT ATTEMPTED ON A PROTECTED VARIABLE.
17

UNPROTECT +
NO VALUE

++-17
17

+
17

// + P 2
19

++-VALUE P
UAL PRIMITIVE

// 1+1
2

PROTECT +
NO VALUE

COMBINE-»-[X (AND) Y]jX+2+Yf2 functions
EXPRESSION

COMBINE 3 A
25

// COMBINE 3 AND 5
34

COMBINED<-tX @ (WITH) Y] :X+Y+10
EXPRESSION

28 June 1971

System Development Corporation
47 TM-4539/000/01

2 COMBINED WITH 3
15

C0MBINATI01HX Y @] :X*Y*2
EXPRESSION

#45 COMBINATION
40

if N-«-4 indirect assignment

M^'N"
N

(M)^44
44

M

N
44

EXPR^::X*Y*Z
EXPRESSION

argument map saving

it ARGM-*-[: X Y Z]
ARGUMENT MAP

it MULT3^ARGM EXPR
[X Y Z]:X*Y*Z

it MULT3 2 3 4
24

it IF 2<4 THEN "OK"
OK

conditionals

it IF 4<2 THEN "OK"
NO VALUE

28 June 1971 48

System Development Corporation
TM-A539/000/01

« IF 2<4 THEN (N-45 PRINT "DONE")
DONE
A 5

N
45

// IFE 2<4 THEN "OK" ELSE "NO GOOD"
OK

// IFE 4<2 "OK" "NO GOOD"
NO GOOD

it FORALL X IN (2 4 6 8} X+2 forall
LIST

4
16
36
64

END

» FORALL X IN (5 12 7 20} WHENEVER X>10 2tX
LIST

4096
1048576

END

0 G^[X Y;Z]:X*Y+Z
EXPRESSION

G 2 4
8

G;3 2 4 1
9

avgvment forcing

if PP1NT0FF

// 2+2

input/output

28 June 1971
System Development Corporation

49 TM-4539/000/01

// PRINT $
4

// SPECIFY S
PLEASE SPECIFY S.

it 145

PRINT S
145

OUTPUT S
145

STASH " S-"

STASH S

// OUTPUT "."
S=145.

if OUTPUT {12 3 7}
1237

PRINTON
NO VALUE

// D*-READ

// 4 This input is under the control of HEAD

// D
4

READ

2+2
4

// READQ

// 2+2
2+2

// EVAL $
4

This input is under the aontrol of READ

28 June 1971
System Development Corporation'

50 TM-4539/000/01

It M*-10
10

|M<12|
1

state oonditiona

M^-IS
ATTEMPTED VIOLATION OF STATE CONDITION 1.
15

// M

STATES
CURRENT STATE CONDITIONS:

(1) M«12
DONE
NO VALUE

N^13
13

|N>M|
i

N^7

// N^l
ATTEMPTED VIOLATION OF STATE CONDITION 2.
1

0 N

STATES
CURRENT STATE CONDITIONS:

(1) M<12
(2) N>M
DONE
NO VALUE

'

DELSTATE 1
NO VALUE

! ' ' System Development Corporation
28 June 1971 ' 51 TM-A539/OOo/oi

// STATES
CURRENT STATE, CONDITIONS:
(1) CANCELLED
(2) N>M
DONE , ; : ' '
NO VALUE

i

N^24
24

fM*15
15

l+2+3+A#D5+6 , aomtrol^haraaier #
11 ' ' > '

l+2+3+4#C , ,. , '

+5 ' ■ ,■•'.'
■' 15 >

i

//C'ABCDE ! , ,

FGH" ' , ! .
AiCDEFGH

1 i

7/ "ABCDE#3FGH"
ABFGH ' *

// #W"ABODE i

FGH

UK ; ' ,
1 . .■. . i ■• . ,

LMN'V/E ' , ' '
ABCDEFGHIJKLMN

"AA/ZIM" '
AA#AA '• ,

"AM[YES THIS IS A COMMENT]//AA"
AAAA

<<■ ■ <..vii . •■ii^L!iifji|i...5l-l<,^^nsiVpaH "■ ■-"—-!-—■ ■■■ I I - 1 ini-UiMpu mi., ..,.., tiwii««!. JWL.yiirpiwnjjaw^j

28 June 1971 52
System Development Corporation

TK-4539/000/01

N#[IN A NAME]#N-<-5#llN A NUMBER] #5
55

// NN
55

// MN^15 //("N".'^")
15

MN
NO VALUE

MM
15

M^15*(12+8) #P
M^15*(12+8)

ATTEMPTED VIOLATION OF STATE CONDITION 2.
500

"ABCD##24EFG"
ABCD

EFG

,,1234##OF567,,

12 34
567

"24" ia the hexadecimal oode for
line feed.

"OF" is the code for carriage return.

LINEPROMPT ,,##0F> "
NO VALUE

mieaellaneouB functions

> 1+1

> LINEPROMPT ,,##24#I "
NO VALUE

SQRT 2
1.414213562373094

■ ' ■ '■ ' ■

.......^,^ j, M||MMa|g ^..^.^..^.^.^.^-^ ..._.

fF'- "- ' '- " " ., . I.B^IJIW^^^^WWW^PPP^WF^W^ iwwm i-mt iiBiiM P i

28 June 1971

EVALST "2+2"
4

FREESPACE
35201

53
System Development Corporation

TM-4539/000/01

(2*5 8<4 D*-{1} 2000 STACKSTATUS RETR 0)
LIST

2000
LIST

1
END
0
10

END
0

// R1*-[X]: R2-<-[Y]: Y+X
EXPRESSION

function defining functions

R2 5
NO VALUE

// Rl 3
[Y] !Yt3

// R2 5
125

Rl 4
[Y] !Y+4

// R2 5
625

- ■ • L ■ '■ - ■■ ■■

28 June 1971 54
System Development Corporation

TM-4539/000/01

APPENDIX B

PRECEDENCE

The before-and-after precedence for predefined functions Is as follows:

BEFORE AFTER

0 ■«- 14

0 <- ■*- 14

1 ST 2

3 % —

3 t 4

5 * 5

6 / 6

7 + 7

7 - 7

8 < 8

8 < 8

8 = 8

8 * 8

8 == 8

8 :> 8

8 > 8

— - 9

10 & 10

11 V 11

12 -»■ 12

13 = 13

13 t 13

14 > 14

15 functions 16
... • • 16

The lower-numbered functions are combined first, that is, have the highest
precedence. In cases of equal precedence, combination done from left to right.

-

 '-'^■.■-■■■ ■■. - . ■^^HM^^^M

' •■11«» II I» I ummmmm**
mm*rw^*mmmm*^

28 June 1971 55
System Development Corporation

TM-4539/000/01

APPENDIX C

CHARACTER CONVERSIONS

UAL TELETYPE EXECUPORT 300

Opening Grouping Parenthesis (

Close Grouping Parenthesis)

Open Operational (

Cose Operational)

Open List << (

Close List >> }

Open Character String II

Close Character String it

Open Argument Map [

Close Argument Map]

Open Quoted Expression ■■ i

Close Quoted Expression - i

Open State Condition 1
Close State Condition 1
Open Quoted Argument* •> i

Close Quoted Argument* ' i

Open String Argument* ii ii

Close String Argument* H II

Blank Space # *

Line Prompt # // #

Logical Implication -» none none

Logical And & & &

Logical Or V V V

Logical Negation ~ none *

Assignment (Definition) <- ■»- *■

Assignment (Change) •«-«- 4-4- -«-<-

Exponentiation f + t

L
IHAMCM

28 June 1971 56
System Development Corporation

TM-4539/000/01

APPENDIX C (Cont'd)

UAL TELETYPE EXECUPORT 300

Integer Division • • II n
Division / 1 1
Multiplication * it *

Subtraction - - -

Addition + + +

Function Name Positioner* A @ @

Less Than < < <

Less Than or Equal to < <■ <m

Equal to = - -

Not Equal to * /=
«•

Greater Than or Equal to 2 >■ >■

Greater Than > > >

A Member of e IN IN

List Formation » » »

Argument Forcing •
>

• •
>

Open Local Variable List* 5 •
9

•
»

Decimal Point • • •

Expression Quote • • • • :

Argument Map Quote* • • • • •

Identically Equal to -= == «

List Continuation • • • • • • • • •

Line Entry or or or

Character Delete Udd Md or rubout #dd or bs

Line Delete m #D or break §D or break

Global Variable ! ! !

Percent % % %

Value of Previous Expression $ $ $

Unused ? ? ?

*Found only in the argument map

ar = carriage return

bs = back apace

16 = blank space

28 June 1971 57
(last page)

System Development Corporation
TM-4539/000/01

APPENDIX D

UAL SYNTAX

<dlglt>::-0|l|2|3!4j5|6|7|8|9
<letter>::-A|B|c|D|E(FJG|H|l)j|K|L|M|N|0|p|Q|R|s|T|u|v|w|X YiZ
<integer>:: = <digit >
<real>::*<integer>.
<nufflber>: :=!<lnteger>|<real>

<digit><lnteger>
<lntager>|<integer>.<integer>

<varlable >::» <name >
<symbollc name>::=!+

&

<symbolic name>

\>\~\v\
iA**-\t\M\

<name>::"<letter><alpha-num sequence>
<alpha-num sequenre>: :a!<alpha-num> | <alpha-num><alpha-num sequence> | <enir)ty>
<alpha-num>: :=<letter>,' <diglt>
<character string>: :•="<strlng>,l

<8tring>: :ar<character> | <character><string> | <empty>
<character>::=<letter>|<dlgit>|<symbollc name>](1)I[I]I'"*I{I}

M1J|:|.|||A|U
<empty>::=

<expression>::=<function name><argument list>|<list>^operational>|
<character string>J<varlable>|<number>|
<functlon deflnltion>|<state conditlon>|<empty>

<state condltlon>::=)<expresslon>)
<llst>: :={expression sequence>}
<expression sequence>::=<expresslon>|<expression><expression sequence>
operational>:J»(<expression sequence>)
<functlon name>::=<varlable>|<qualified variable>
<quallfled variable>::=<variable>;<integer>
<argument list>::=<expression sequence>
<function definition>: :=<argument mapxquoted expression>
<quoted expressions:=v <expression>'(:<expresslon>|<expression>
<argument map>::*[<bound variable llst><local variable 8pecification>][<en;pty
<bound variable lisi:>::=<bound variable>|<bound variable><bound variable

list>|<empty>
<bound variable>::«<variable>|(<variable>) |K<variable>'|"<varlable>"|

variable:».' |: (A j <integer>
<local variable specificatioii>::«;<local variable list>|<empty>
<local variable list>::"B<local variable>|<local variable><local variable list>
<local variable^-: :»<variable> I <variable>I

